Seguimos con la tercera y última parte de este artículo publicado por la MIT Technology Review y redactado por Stephen S. Hall, escritor científico, según el cual la luz permite cambiar la activación de las neuronas, una ciencia llamada optogenética.
Espionaje
La optogenética se originó en el año 2000, en una charla nocturna en la Universidad de Stanford. Allí, los neurocientíficos Karl Deisseroth y Edward Boyden empezaron a lanzar ideas sobre formas de identificar y, en última instancia, manipular la actividad de circuitos cerebrales específicos. Deisseroth, que tenía un doctorado en neurociencia por la Universidad de Stanford quería comprender (y algún día tratar) el sufrimiento mental que acosa a la humanidad desde la era de Hipócrates, sobre todo la ansiedad y la depresión. Boyden, que estaba haciendo trabajo doctoral sobre las funciones cerebrales, tenía una curiosidad omnívora por la neurotecnología. Al principio soñaba con implantar diminutas cuentas magnéticas como forma de manipular las funciones cerebrales en animales vivos intactos.
Desde la década de 1970 los microbiólogos habían estado estudiando una clase de moléculas sensibles a la luz conocidas como rodopsinas, que se habían identificado en organismos sencillos como las bacterias, los hongos y las algas. Estas proteínas actúan como porteros de la membrana celular; cuando detectan una longitud de onda de luz concreta, bien dejan entrar iones en una célula o los dejan salir. Este intercambio de iones imita el proceso de disparo de una neurona: la carga eléctrica dentro de la célula nerviosa se crece hasta que la célula desata un impulso de actividad eléctrica que fluye a lo largo de su fibra (o axón) a las sinapsis, donde el mensaje se pasa a la siguiente célula de la vía. Los científicos especulaban con que si se pudiera introducir el gen productor de una proteína sensible a la luz en una neurona y después se aplicara luz a la célula, podrías hacer que se disparase. En breve, podrías encender y apagar neuronas específicas de un animal consciente mediante un estallido de luz.
En 2004 Deisseroth logró insertar el gen de una molécula sensible a la luz de un alga en la neurona de un mamífero. A continuación Deisseroth y Boyden demostraron que la luz azul podía inducir que las neuronas se disparasen. Más o menos en esta época, un estudiante de doctorado llamado Feng Zhang se unió al laboratorio de Deisseroth. Zhang demostró que el gen para la proteína deseada se podía introducir en las neuronas por medio de virus modificados genéticamente. De nuevo, usando pulsos de luz azul, el equipo de Stanford demostró que podía encender y apagar los pulsos eléctricos en células nerviosas de mamíferos modificadas mediante virus. En un artículo seminal que apareció en Nature Neuroscience en 2005 (después, según Boyden, de que lo rechazara la revistaScience), Deisseroth, Zhang y Boyden describían la técnica.
Los neurocientíficos comprendieron inmediatamente el poder de la técnica de insertar genes sensibles a la luz en animales vivos. Investigadores del propio laboratorio de Deisseroth la usaron para identificar nuevas vías para controlar la ansiedad en ratones, y tanto el equipo de Deisseroth como sus colaboradores en el Hospital Mount Sinai de Nueva York (EEUU) la usaron para activar y desactivar la depresión en ratas y ratones. Y el laboratorio de Susumu Tonegawa del MIT ha usado la optogenética hace poco para crear recuerdos falsos en animales de laboratorio.
Boyden describió las tecnologías de segunda generación que ya se están desarrollando. Una implica espiar células nerviosas únicas en animales anestesiados y conscientes para poder ver «lo que se agita bajo el mar de actividad» de una neurona cuando un animal está inconsciente. Boyden afirmó que «literalmente revela lo que significa tener pensamientos, consciencia y sentimientos».
El grupo de Boyden acababa de despachar un artículo informando de un nuevo truco en optogenética: distintas vías neuronales independientes se pueden perturbar simultáneamente con longitudes de onda de luz azul y roja. La técnica tiene el potencial para demostrar cómo interactúan y se influyen mutuamente distintos circuitos.
A unas manzanas de allí, Feng Zhan, quien ahora es profesor adjunto del MIT y miembro del claustro del Instituto Broad, hace una lista con las preguntas eternas de la neurociencia a las que ahora se podría intentar dar respuesta con las nuevas tecnologías. «¿Se puede actualizar la memoria y aumentar su capacidad?», se pregunta. «¿Cómo se codifican genéticamente los circuitos neuronales? ¿Cómo se pueden reprogramar las instrucciones genéticas? ¿Cómo se arreglan las mutaciones genéticas que producen fallos en las conexiones u otros errores de funcionamiento del sistema neuronal? ¿Cómo rejuveneces un cerebro viejo?».
Además de ayudar a inventar la optogenética, Zhang ha tenido un papel fundamental en el desarrollo de una técnica llamada CRISPR (ver «TR10: Edición genómica«). Esta tecnología permite a los científicos escoger un único gen -en una neurona, por ejemplo- y bien borrarlo, bien modificarlo. Si este se codifica para que incluya una mutación de la que se sabe o se sospecha que produce desórdenes cerebrales, los científicos pueden estudiar la progresión de esos desórdenes en animales de laboratorio. Además, los investigadores pueden usar CRISPR en el laboratorio para alterar células madre que después se pueden convertir en neuronas y observar los efectos.
Transparencia
De vuelta en Stanford, cuando no está viendo a pacientes con desórdenes del espectro del autismo o con depresión en la clínica, Deisseroth continúa inventando herramientas que él y otros puedan usar para estudiar estas enfermedades. El verano pasado su laboratorio informó de una nueva forma para que los científicos puedan ver los cables de fibras nerviosas conocidas como «materia blanca» que conectan distintos recintos del cerebro. La técnica, llamada Clarity, primero inmoviliza las biomoléculas como la proteína y el ADN en una red parecida al plástico que retiene la integridad física del cerebro post mortem. Entonces los investigadores lavan la red con una especie de detergente que disuelve toda la grasa del tejido cerebral, que habitualmente bloquea la luz. El cerebro se vuelve transparente, exponiendo de repente todo el patrón de cableado en tres dimensiones para poder observarlo.
Combinadas, estas nuevas herramientas están transformando muchas de las tradicionales posturas de la neurociencia. Por ejemplo, como señala Deisseroth en un artículo publicado este año en Nature, la optogenética supone un desafío para algunas de las ideas subyacentes en las técnicas de estimulación del cerebro profundo, que se han usado ampliamente para tratar de todo, desde los temblores hasta la epilepsia pasando por la ansiedad y el desorden obsesivo compulsivo. Nadie sabe exactamente por qué funciona, pero hasta ahora se ha partido de la suposición de que sus efectos terapéuticos derivan de la estimulación eléctrica de regiones muy específicas del cerebro; los neurocirujanos hacen esfuerzos ímprobos por colocar los electrodos con la máxima precisión.
Sin embargo, en 2009 Deisseroth y sus compañeros demostraron que estimulando específicamente la materia blanca, los cables neuronales que están cerca de los electrodos, se producían mejoras clínicas más consistentes en los síntomas de la enfermedad de Parkinson. En otras palabras, no importaba tanto el barrio del cerebro como qué autovías neuronales pasaban cerca.
Las nuevas técnicas permitirán a los científicos ver por primera vez el conocimiento humano en acción, tener una idea de surgen cómo los pensamientos, las sensaciones, los temores y la actividad mental disfuncional de los circuitos neuronales, y de la actividad de tipos específicos de células. Los investigadores apenas acaban de empezar a poder observar todas estas cosas, pero dado el ritmo que ha seguido el desarrollo tecnológico en los últimos tiempos, podríamos tener esta visión mucho antes de lo que cualquiera soñó que sería posible cuando la luz de la optogenética se encendió por primera vez hace apenas unos años.
Stephen S. Hall es escritor científico y autor residente en Nueva York. Su último artículo para MIT Technology Review fue “Cómo reparar los malos recuerdos».